

DEVELOPING PLANT PROBIOTIC BACTERIA BASED BIOFORMULATION HAVING PGPR PROPERTIES#

Rathod Zalak R.1, Dharmpal Meet A.2, Saraf Meenu S.1* and Patel Baldev V.1

Abstract

Probiotics are commonly used in functional foods for humans, as well as therapeutic, prophylactic and growth supplements in animal production and human health. It may be considered as an alternative to antimicrobials in disease control strategies of cultured fish. Plant Probiotic bacteria have both properties; Probiotic as well asPlant growthpromoting property. Plant Probiotic is formulated to re-establish advantageous microbial populaces that give the dirt the fundamental parts to advance substantialdevelopment and decrease plant pressure. It is a unique complex of beneficial microorganisms.

Keywords: PGPR; Plant probiotic; Probiotic; Rhizobacteria

#General Article

University, Ahmedabad, Guiarat, India, ²Department of Biotechnology, KadiSarvaVishwavidyalaya, Gandhinagar, Gujarat, India

E-Mail: zdurga.03@gmail.com

¹Department of Microbiology and Biotechnology, University School of Sciences, Gujarat

Introduction

lant Probiotic is a remarkable complex of gainful microorganisms. It advances the foundation and improves the development of nursery and nursery crops, scene plants and claim to fame crops, in a wide range of soils and developing media. Probiotic products are useful for our wellbeing, with benefits running from improved absorption to overseeing hypersensitivities and colds. Similarly, as people can profit by the great microorganisms of probiotics, plants can profit by specific organisms. What's more, that advantage is likewise useful for the earth. Advantageous microorganism populaces are fundamentalto making the perfect soil condition for substantialplant development. In the course of the last 500 million years, plants and gainful microorganisms have built up an advantageous relationship. At the point when a plant photosynthesizes, it discharges carbon exudates into the dirt or developing media, which microorganisms use as a food source. The microorganisms in the rhizosphere encompass the root to get this food source. Consequently, these microorganisms shield the plant roots from nematodes and pathogens, reuse supplements, improve the encompassing soil structure and make minerals accessible to the plant. Sadly, today numerous dirtare horribly out of parity and are basically without Pansy Matrix Sunrise gainful microbial populaces. This is expected essentially to the utilization of soilless media in nursery and nursery creation and to over-dependence on pesticides and manufactured manures to treat the side effects as opposed to the reason for the issues. These synthetic substances unfavourably influence the useful microbial populaces found in solid soil. Plant Probiotic is figured to restore helpful microbial populaces that give the dirt the fundamental parts to advance sound development and lessen plant pressure. Microscopic organisms are universal in nature: some of them are hurtful, yet dominant part of them is beneficial to the plants. They contain different characteristics which legitimately and by implication bolster plant development and their fitness against unfriendly states of both abiotic and biotic in some random natural framework. Facilitated cooperations among organisms and plants are the most extreme significancefor their reliableaffiliation. Plant growth-promoting rhizobacteria (PGPR) is beneficial rhizobacteria which enhance plant growth as well as the productivity by a variety of mechanisms.

Plant Growth Promoting Rhizobacteria (PGPR)

The acknowledgement of plant development, advancing rhizobacteria (PGPR), a gathering of advantageous plant microorganisms, as conceivably helpful in the animating plant development and expanding crop yields has advanced in recent years to where today analysts are able to more than once use them effectively in field tests. It increased growth and yields. A superior comprehension of the microbial associations that bring about plant development increments will significantly build the achievement pace of field applications. PGPR, root-colonizing microscopic organisms are known to impact plant development by different immediate or roundabout systems. A few synthetic changes in the soil are related toPGPR. Plant development, advancing microscopic organisms (PGPB) is accounted for to impact the development, yield, and supplement, take-up by a variety of components. Some bacterial strains straightforwardly manage plant physiology by imitating blend of plant hormones, while others increment mineral and nitrogen accessibility in the dirt as a manner to expand developed. The isolates could exhibit more than two or three PGP traits,

which may promote plant growth directly or indirectly or synergistically. The plant growth stimulating efficiency of bacterial inoculants is affected by the soil nutritional condition. The bacterial inoculation has a much better stimulatory effect on plant growth in nutrient deficient soil than in nutrient-rich soil. The simultaneous screening of rhizobacteria for growth promotion under gnotobiotic conditions and in vitro production of auxins is a useful approach for selecting effective PGPR. Some PGPR releases a blend of volatile components like 2, 3-butanediol and acetoin that promote the growth of Arabidopsis thaliana.

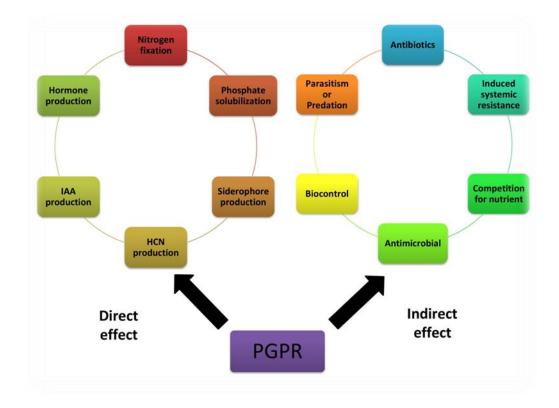


Figure: 1. Effects of Plant Growth Promoting Rhizobacteria (PGPR).

Biological Nitrogen Fixation

Various bacterial species having a place with genera Azospirillum, Alcaligenes, Arthrobacter, Acinetobacter, Bacillus, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Pseudomonas, Rhizobium and Serratia are related with the plant rhizosphere and can apply a beneficialimpact on plant development. The significant job is played by plants in choosing and enhancing the sorts of microbes by the constituents of their root exudates. Consequently, the bacterial network in the rhizosphere creates relying upon the nature and convergences of natural constituents of exudates, and the relating capacity of the microscopic organisms to use these as wellsprings of vitality. There is a continuum of bacterial

nearness in soil rhizosphere, rhizoplane and inner of the plant tissues. Rhizospheric bacterial networks anyway have productive frameworks for take-up and catabolism oforganic mixes present in root exudates. A few microscopic organisms help to get more extreme profit by root exudates by their capacity to join to the root surfaces (rhizoplane). Since acquainted cooperations of plants and microorganisms more likelv not, apparently because of Co-development, the utilization of the last gathering as bio inoculants must be pre-adjusted, with the goal that it fits into a longterm feasible agrarian framework. PGPR isgenerally utilized as inoculants for improving the development and yield of farmer harvests and offers an alluring method to supplant concoction composts, pesticides, and enhancements. The utilization of bio-compost and bioenhancer, for example, N2 (nitrogen) fixing microbes and gainful miniaturized scale living being can decrease substance manure applications and subsequently lower creation cost. Use of PGPR so as to build the profitability might be a reasonable option in contrast to natural manures which likewise helps in diminishing the contamination and saving the earth in the soul of a biological agribusiness. Thereforerhizospheric microbes can be a promising hotspot for plant development, advancing specialist in farming and are generally utilized as inoculants for improving the development and yield of horticultural harvests. The capacity to decrease and infer such obvious measures of nitrogen from the environmental store and advance the dirt is limited to microscopic organisms and Archaea. These incorporate harmonious nitrogen fixing (N2-fixing) structures, viz. Rhizobium, the commit symbionts in leguminous plants and Frankia in non-leguminous trees, and non-advantageous (free-living, affiliated or endophytic) N2-fixing structures, for example, cyanobacteria, Azospirillum, Azotobacter, Acetobacterdiazotrophicus, Azoarcus and so on.

Symbiotic Nitrogen Fixers

Nitrogen-fixing microscopic organisms have been broadlycategorised as Rhizobia and Frankia. Frankia structures rooted knobs on in over 280 types of woody plants from 8 unique families. Frankia is known to shape successful advantageous interaction with the types of Alnus and Casuarina. Various individual species may improve plant sustenance by discharging plant development controllers, siderophores and hydrogen cyanide or may build phosphate accessibility.

Rhizobium

At the point when rhizobia colonize the roots of the non-legume plant in a vague relationship, the strains of this family may act as PGPR. Rhizobium sp. causes a more prominent increment in development, yield and the number of knobs.

Bradyrhizobium

Bradyrhizobium species are Gram-negative bacilli (rod-shaped) with a single subpolar or polar flagellum. They are a common soil-dwelling microorganism that can form symbiotic relationships with leguminous plant species where they fix nitrogen in exchange for carbohydrates from the plant. Like other rhizobia, they have the ability to fix atmospheric nitrogen into forms readily available for other organisms to use. They are slowgrowing in contrast to Rhizobium species, which are considered fast-growing rhizobia. In a liquid media broth, it takes Bradyrhizobium species 3-5 days to create moderate turbidity and 6-8 hours to double in population size. Some studies indicate that co-inoculation of Bradyrhizobium and certain PGPRs can positively affect symbiotic nitrogen fixation by enhancing both root nodule numbers or mass, dry weight of nodules, yield components, grain yield, soil nutrient availability and increasing the nitrogenise activity and increases the nodulation and nitrogen fixation in Glycine max. The opposition among PGPR and *B. japonicum* for the specialities in the rhizoplane, creation of auxins, and acceptance of foundational opposition (ISR) by the creation of siderophores or by lipopolysaccharides present in the external layer (LPS) are the likely purposes behind the improvement of the natural nitrogen obsession, nodulation and development of Lupinusal.bus I. cv Multolupa by plant development, advancing rhizobacteria.

Non-Symbiotic Nitrogen Fixers

Non-advantageous nitrogen obsession has an incredible agronomic noteworthiness. One principle confinement that it faces is the accessibility of carbon and vitality hotspot for the vitality serious nitrogen obsession process. Be that as it may, this impediment can be repaid by drawing nearer to or inside the plants, viz. in diazotrophs present in the rhizosphere, rhizoplane or those developing endophytically. Some significant non-harmonious nitrogen-fixing microscopic organisms incorporate Azoarcus sp., Gluconaceto-bacterdiazotrophicus, Herbaspirillium sp., Azotobacter sp., Achromobacter, Acetobacter, Alcaligenes, Arthrobacter, Azospirillum, Azomonas, Bacillus, Beijerinckia, Clostridium, Corynebacterium, Derxia, Enterobacter, Klebsiella, Pseudomonas, Rhodospirillum, RhodoPseudomonas and Xanthobacter.

Azotobacter

The family Azotobacteriaceae involves two genera, in particular, Azomonas (non-sore shaping) with three species (A. agilis, A. insignis and A. macrocytogenes) and Azotobacter (growth framing) including 6 species, to be specific, A. chroococcum, A. vinelandii, A. beijerinckii, A. nigricans, A. armeniacus and A. Paspali. Azotobacter is by and large viewed as a free-living vigorous nitrogen-fixer. Azotobacterpaspali, which was first portrayed, by Dobereiner and Pedrosa has been detached from the rhizosphere of Paspalumnotatum, a tetraploid subtropical grass, and is profoundly have explicit. Different yields in India have been vaccinated with diazotrophs especially Azotobacter and Azospirillum.

Azospirillum

Since 1970's, Azospirillum strains have been detached and utilized. This gathering of free-living rhizobacteria includes ten species, every one grouped by its specific biochemical and atomic attributes: A. lipoferum and A. brasilense; A. amazonense; A. halopraeferens; A. irakense; A. largimobile; A. doebereinerae; A. Oryzae; A. melinis and as of late A. canadensis. In spite of the fact that Azospirillum was first confined from oats and a large portion of its underlying vaccination has been done on the primary grain harvests and, there are more non-oat species effectively immunized with Azospirillum and oats. Azospirillum strains have no inclinations for crop plants or weeds or for yearly or perpetual plants and can be effectively applied to plants that have no past history of Azospirillum in their foundations. Apparently Azospirillum isn't a plant explicit bacterium and is a general root colonizer.

Acetobacter

Acetobacter has picked up significance as an inoculant for sugarcane. This bacterium has effectively colonizes sugar cane assortments in India, where the concoction N preparation is totally kept away from for in any event two progressive years and supplanted by natural composts. The family Acetobacteriaceae incorporates genera, Acetobacter, Gluconobacter, Gluconoacetobacter and Acidomonas. In view of 16S rRNA arrangement investigation, the name Acetobacterdiazotrophicus has been changed to Gluconoacetobacterdiazotrophicus. *G.diazotrophicus* disengaged from different sources doesn't display a lot of variety in the hereditary assorted variety.

Azoarcus

Azoarcus, which is a vigorous/microaerophilic nitrogen-fixing bacterium, was confined from surface-cleaned tissues of kaller grass (Leptochloafusca L Kunth) and can contaminate underlying foundations of rice plants also Kallar grass utilized as a pioneer plant in Pakistan on salt-influenced low ripeness soils as it is a salt-open minded grass. The class Azoarcus has been recognized, with two species, A. indigens and A. communis, and three extra anonymous gatherings, which were particularly at species level. Nitrogen obsession by Azoarcus is incredibly proficient.

Bacillus

Bacillus is the most plentiful variety in the rhizosphere, and the PGPR action of a portion of these strains has been known for a long time, bringing about an expansive information on the instruments in question. There are various metabolites that are discharged by these strains, which unequivocally influence nature by expanding supplement accessibility of the plants. Normally present in the prompt region of plant roots, B. subtilis can keep in touch with higher plants and advance their development. In a micropropagated plant framework, bacterial immunization toward the start of the acclimatization stage can be seen from the point of view of the foundation of the dirt microbiotarhizosphere.

Pseudomonas

Pseudomonas sp. is universal microbes in rural soils and has numerous qualities that make them appropriate as PGPR. The best strains of Pseudomonas have been Fluorescent Pseudomonas spp. Significant exploration is in progress universally to misuse the capability of one gathering of microbes that have a place with Fluorescent Pseudomonads (FLPs). FLPs help in the support of soil wellbeing and are metabolically and practically generally different. Explicit strains of the Pseudomonas fluorescens-putida bunch has as of late been utilized as seed inoculants on crop plants to advance development and increment yields. These Pseudomonads, named PGPR, quickly colonize plant roots.

Antifungal Activity

PGPR improve plant development by forestalling the expansion of phytopathogens and in this way bolster plant development. Some PGPR blend antifungal anti-toxins, for example P. fluorescens produces 2,4-diacetyl phloroglucinol which restrains the development of phytopathogenic organisms. Certain PGPR debase fusaric corrosive created by Fusarium sp. causative operator of shrivel and consequently forestalls the pathogenesis.

Some PGPR can likewise deliver proteins that can lyse contagious cells. For instance, Pseudomonas stutzeri produces extracellular chitinase and laminarinase which lyses the mycelia of Fusariumsolani. Lately, fluorescent Pseudomon'as has been recommended as potential natural control operator because of its capacity to colonize rhizosphere and ensure plants against a wide scope of significant agronomic contagious ailments, for example, dark root-decay of tobacco, root-decay of pea, root-decay of wheat, damping-off of sugar beet and as the possibilities of hereditarily controlling the maker creatures to improve the viability of these biocontrol specialists.

Plant Probitic's Action Under Stressed Conditions

Rural harvests are presented to numerous burdens that are initiated by both biotic and abiotic factors. These anxieties decline yields of harvests and speak to obstructions to the presentation of harvest plants into zones that are not reasonable for crop development. The event and movement of soil microorganisms are influenced by an assortment of ecological factors just as plant-related components (species, age). Abiotic stress factors incorporate high and low temperature, saltiness, dry season, flooding, bright light, air contamination (ozone) and substantial metals. The immunization of salt-focused on plants with PGPR strains lightens the saltiness worry in plants. Soil salinity is one of the most extreme components restricting nodulation, yield and physiological reaction in soybean. An expansion in saltiness in the dirt causes a physiological reaction or turmoil in lettuce plants. The drawn out objective of improving plant-microorganism cooperations for saltiness influenced fields and yield profitability can be met with a comprehension of the system of osmoadaptation in Azospirillum sp. The blend and movement of nitrogenases in A. brasilense is restrained by saltiness stress. Tripathi et al. detailed that in Azospirillum sp. there is an amassing of perfect solutes, for example, glutamate, proline, glycine betaine and trehalose in light of saltiness/osmolarity; proline assumes a significant job in osmoadaptation through increment in osmotic pressure that moves the predominant osmolyte from glutamate to proline in A. brasilense. Azospirillum-vaccinated sorghum plants had more water content, higher water potential, and lower shade temperature in their foliage. The PGPR containing ACC deaminase is available in different soils and offer guarantee as a bacterial inoculum for development of plant development, especially under troublesome natural conditions, for example, flooding, overwhelming metals, phytopathogens, dry spell and high salt. Ethylene is a significant phytohormone, however, over-delivered ethylene under distressing conditions can bring about the hindrance of plant development or passing, particularly for seedlings. PGPR containing ACC deaminase can hydrolyze ACC, the quick forerunner of ethylene, to F-ketobutarate and alkali, and along these line advance plant development. Immunization of yields with ACC deaminase-containing PGPR may help plant development by reducing pernicious impacts of salt pressure ethylene.

The metal safe PGPB can fill in as a viable metal sequestering and development, advancing bioinoculant for plants in metal stressed soil. The malicious impacts of overwhelming metals taken up from the earth on plants can be diminished with the utilization of PGP microorganisms or mycorrhizal parasites. The dirt microorganisms, plant development advancing rhizobacteria (PGPR), Psolubilizing microscopic organisms, mycorrhizal-helping microbes (MHB) and arbuscularmycorrhizal parasites (AMF) in the rhizosphere of plants developing on follow metal polluted soils assumes a significant job in phytoremediation. Phytoreme-

diation gives a modest, vitality effective detoxification technique that controls natural plant qualities to focus the metal tainting in shoot biomass and decrease the bioavailability of the substantial metals. Soil organisms moderate harmful impacts of substantial metals on the plants through discharge of acids, proteins, phytoantibiotics, and different synthetic concoctions (Jing et al.).

Mechanisms Shown By PGPR

Instigated Systemic Resistance (ISR) of plants against pathogens is a far reaching wonder that has been seriously explored as for the fundamental flagging pathways just as to its likely use of plant security. Evoked by a neighborhood contamination, plants react with a salicylic-subordinate flagging course that prompts the foundational articulation of an expansive range and enduring illness obstruction that is effective against organisms, microorganisms and infections. Salicylic corrosive (SA) has a significant job in the flagging pathway prompting ISR. After disease, endogenous degrees of SA increment locally and fundamentally, and SA level increment in the phloem before ISR happens. SA is integrated because of disease both locally and foundationally; all over again the creation of SA in non-contaminated plant parts may hence add to the fundamental articulation of ISR. Contrasted with pathogens actuating SAR, non-pathogenic rhizobacteria inciting ISR trigger an alternate signaltransduction pathway not subject to the amassing of the SA and initiation of Pathogensis-related (PR)- qualities yet reliant on the precipitation of ethylene and jasmonic corrosive. Assessment of development advancement and incited fundamental malady opposition (ISR) in cucumber intervened by plant development advancing rhizobacteria (PGPR), with and without methyl bromide soil fumigation demonstrates that in cucumber creation frameworks, withdrawal of methyl bromide doesn't contrarily affect PGPR interceded ISR, and furthermore that PGPR have potential as an option in contrast to methyl bromide fumigation. The plant growthpromoting Pseudomonas strains, which actuated obstruction efficiently in watermelon to sticky stem decay, is examined on their initiated fundamental opposition (ISR) - related qualities (Lee et al.). Enzymatic pathways including hydrolytic, oxidative, reductive, and replacement/move responses are involved in detoxification of cyanide by microorganisms and parasites. The catalyst rhodanese from cyanogenic bacterium Pseudomonas aeruginosa engaged with move responses causes cyanide detoxification. The compounds like chitinase, β-1, 3 Glucanase and Cellulase are associated with hostile activity of Pseudomonas against parasitic pathogens. The fragrant amino corrosive ward articulation of Indole-3-Pyruvate decarboxylase, which is a key compound in the creation of indole-3-acidic corrosive (IAA) in rhizobacteriumEnterobacter cloacae UW5 is controlled by TyrR protein. Siderophore biosynthesis are commonly firmly controlled by iron-delicate Fur proteins, the worldwide controllers GacS and GacA, the sigma factors RpoS, PvdS, and FpvI, majority detecting autoinducers, for example, N-acyl homoserine lactone, and site-explicit recombinases (Ketal et. al.).

Prospective Biocontrol Agents of Plant Diseases

Since 1987 in China, PGPR, called yield expanding microscopic organisms (YIB) have been to a great extent applied in 48 distinct harvests over 3.35 a huge number of hectares (Wenhua and Hetong 1997). In that nation, efficiency gains as high as 23.1% and 22.5% were gotten, individually, in yams and potatoes. Furthermore, amazing 85.5%

and 80.3% decrease levels of maladies brought about by Xanthomonasoryzaepv. oryzae and Glomerellacingulata, individually, were recorded (Zhang et al. 1996). Rhizobacteria are viable rivals in the rhizosphere which can set up and endure on underlying foundations of agronomically developed plants (Kloepper and Mariano 2000). PGPR may advance plant development straightforwardly on sound plants or in a roundabout way while controlling phytopathogens or vermin in various yields (Kloepper 1993; Medeiros et al. 2005; Zhender et al. 1997; Keel and Maurhofer 2009). They can be confined from any other plant part other than the roots just as from the plant surface or inside. As per Hallman et al. (1997), the endophytic microorganisms engaged with organic control demonstrated points of interest of having the equivalent environmental specialty of the pathogen and could be shielded from differing abiotic influences.

The PGPR likewise display a few systems of organic sickness control, the greater part of which include rivalry and creation of metabolites which influence the pathogen legitimately. Instances of such metabolites incorporate anti-microbials, cell divider corrupting proteins, siderophores, and HCN (Enebak et al. 1998; Kloepper 1993; Weller 1988). It is critical to express that various systems might be found in a solitary strain and act at the same time. Some PGPR don't deliver metabolites against the pathogens and are spatially isolated from them. These two qualities recommend that modification of host safeguards components represent the watched malady security. Incited fundamental obstruction (ISR) or foundational obtained opposition (SAR) is defined as the initiation of concoction and physical resistances of the plant have by an inducer which could be a substance or a microorganism, prompting the control of a few pathogens (Kloepper et al. 1992). A few PGPR strains can go about as inducers of ISR (Kloepper et al. 1992), and PGPR-intervened ISR might be an option in contrast to the utilization of concoction inducers or pathogens for prompting SAR. This component is examined independently in this part. Dark decay of crucifers, a foliar ailment, and Fusarium shrivel of banana, a vascular illness. Dark decay brought about by Xanthomonascampestrispy, campestris (Xcc) causes serious financial misfortunes in all formative crucifer stages (Mariano et al. 2001). Bacillus spp. secluded from sound cabbage, kale, and radish had decreased dark decay frequency in kale and cabbage in nursery and field tests (Assis et al. 1996). Monteiro et al. (2005) indicated that four of these Bacillus strains created lipopeptides dynamic against Xcc during its late development stage. These peptide anti-infective agents are amphiphilic mixes with surfactant movement (Zuber et al. 1993). As of late, it was shown that lipopeptides can invigorate ISR in plants, likely by connecting with plant cell layers and inciting brief adjustments in the plasma film which could raise plant resistances (Ongena et al. 2009). Fusarium wither of banana brought about by Fusariumoxysporum f. sp. cubense is a ruinous illness in Brazil and different pieces of the world. The rhizomes and pseudostems of tainted plants utilized for engendering are the chief wellsprings of inoculums and illness scattering. Along these lines, micropropagated wellbeing plantlets are utilized to forestall or postpone the presentation of this pathogen in soils. In any case, these plantlets are increasingly defenseless in this and other soilborne pathogens and ought to be ensured before transplanting. PGPR are an option for improving this framework. In green house considers, endophytic and epiphytic microbes applied, secluded or in blends, as root and substrate medicines, significantly expanded the development of micropropagated banana plantlets and controlled Fusarium shrivel (Mariano et al. 2004). As per Nowak and Shulaev (2003), the creation of excellent propagules with malady opposition might be accomplished among others techniques by their "in vitro" and "ex vitro" biopriming (preparing with beneficial microorganisms). Regularly, control depends on the utilization of single biocontrol specialists. This procedure must be changed in light of the fact that, from the natural perspective, the infection is a piece of a complex agroecosystem. As revealed by Fravel (2007), a comprehensive perspective of this framework can assist take with amending choices about administration. Hence, a unique methodology for improving the PGPR efficiency is the utilization of blends containing various genera or species that presents added substance or synergistic impacts, for example, nitrogen-fixing microorganisms and mycorrhiza partner microscopic organisms (MHB). Another procedure is to utilize PGPR, blended or rotated with fungicides, coordinating natural and synthetic control. MHB is those which either help mycorrhiza development or advance the working of their beneficial interaction. They exist in arbuscular and ectomycorrhizal frameworks. MHB present three significant capacities: supplement activation from soil minerals, fixation of environmental nitrogen, and plant security against root pathogens (Frey-Klett et al. 2007). As indicated by these creators, PGPR initiated increments in mycorrhizal root colonization from 1.1 to 17.5 creases in various communications. A portion of the MHB referred to were Pseudomonas fluorescens, P. monteilii, Bacillus coaqulans, B. subtilis, Paenibacillusbrasilensis, Rhizobium leguminosarum, and Bradyrrhizobiumjaponicum. Incited Systemic Resistance as a Mechanism of Disease Suppression by Rhizobacteria.

Rhizobacteria Antagonistic to Plant Disease Agents

Gram Negative Bacteria

The most important group of PGPR among Gram negative bacteria are the genera Pseudomonas.

Pseudomonas

PGPR impact of Pseudomonas was to a great extent assessed (Lemanceau 1992). Microorganisms having a place with Pseudomonas were accounted for as PGPR for some yields of potato (Solanumtuberosum L.) (Burr et al. 1978; Schippers et al. 1987), radish (RaphanussativusL.)(Kloepper and Schroth 1978), sugar beet (Beta vulgaris L.)(Suslow and Schroth 1982), and lettuce (Chabot et al. 1993). Strains of fluorescent pseudomonads utilized in biocontrol have contributed incredibly to the comprehension of the systems engaged with malady concealment. A considerable lot of these microscopic organisms could forestall plant maladies by different instruments: antibiosis, rivalry, or parasitism. Inside the sort Pseudomonas, Pseudomonas fluorescens which are universal rhizosphere occupant microorganisms are the most considered gathering (Weller 1988).

Gram Positive Bacteria

The most important group of PGPR among Gram positive bacteria are Bacillus, Paenibacillus, and Actinomycetes.

Bacillus and Paenibacillus

Various types of Paenibacillus can initiate plant development by fixing climatic nitrogen (Von Der Weid et al. 2002), and creating auxins (Lebuhn et al. 1997; Bent et al. 2001; Da Mota et al. 2008) and cytokinin (Timmusk et al. 1999). Benificial impacts were accounted for in lodgepole pine (Pinuscontorta) (Bent et al. 2001) and tidy (Picea sp.) (Shishido et al. 1995) after vaccination of P. polymyxa strain. Bacillus strains could likewise curb soil-borne pathogens (Von Der Weid et al.2005) and actuate plant protection from maladies following root colonization (Timuskand Wagner 1999). In the inverse to Pseudomonas and other nonspore-shaping microscopic organisms, Bacillus spp. can shape endospores that permit them to make due for broadening periods under negative ecological conditions. This attribute is important in their relative tough feasibility when put away for a generally extensive stretch (time span of usability). Bacillus species have been accounted for as plant advancing microbes in a wide scope of plants (Deepa et al. 2010; Bai et al. 2003; Kokalis-Burelle et al. 2002; Kloepper et al. 2004). Diverse Bacillus species were accounted for to be viable biocontrol operators in nursery or field preliminaries (Stabb et al. 1994; Kloepper et al. 2004). Disconnects of Bacillus subtilis restrained S. cepivorum in vitro and had the option to stifle the frequency of onion white decay, prompting an expanded onion development and yield (Utkhede and Rahe 1980). The concealment of onion white decay could be because of a potential antimicrobial creation and most likely additionally utilization of onion delivered energizers of sclerotial germination (Utkhede and Rahe 1980). Individuals from Bacillus were accounted for as makers of anti-infection agents repressing different phytopathogens including F. oxysporum f. sp. ciceri(Kumar 1999) and Rhizoctoniasolani (Asaka and Shoda 1996). Components associated with Bacillus evoking plant development, advancement incorporate auxin creation

Actinomycetes

Actinomycetes are Gram-positive microscopic organisms portrayed by a genome with high G+C proportion. They are for the most oxygen consuming, yet some of them can develop anaerobically. A few Actinomycetes structure spreading filaments and have mycelial development and a few animal varieties produces outer spores. Notwithstanding the way that actinomycetes are to a great extent spread in the nature particularly in earthly environments and that they were unequivocally concentrated since they are the root of various antibacterial and antifungal mixes and some are utilized in biocontrol, just not many works are keen on their value as PGPR for plants like wheat (Aldesuquy et al. 1998; Hamdali et al. 2008a) and broccoli (Hasegawa et al. 2008).

Merriman et al. (1974) detailed the utilization of the PGP Streptomyces griseus confine with biocontrol capacities toward R. solani in carrot. Opposing Streptomycetes were additionally used to advance the development of coniferous plants. In Brazil, one Streptomyces seclude hereditarily near Streptomyces kasugaensis ready to restrain the development of Fusarium and Armillaria pine decay indicated additionally plant advancement in the development of Pinustaeda seedlings under nursery explore (de Vasconcellos and Cardoso 2009). El-Abyad et al. (1993) depicted the utilization of three Streptomyces spp., S. pulcher, S. canescens, and S. citreofluorescens, powerful in the control of some tomato ailments, including those brought about by F. oxysporum f. sp. lycopersici, Verticilliumalbo-atrum, Alternariasolani, Pseudomonas solanacearum, and Clavibactermichiganensis subsp. michiganensis in tomato.

Bacterial Antagonism: Protection Against Phytopathogens

Generally, plant diseases cause 10–20 % loss in production (James 1981). The use of antibacterial and antifungal chemicals is deprecated in view of sustainable agricultural practices. Hence, an alternative to chemical control of plant diseases by the use of bacteria able to antagonize phytopathogenic is considered as a more environmentally friendly process. Biological control of soil-borne pathogens with antagonistic bacteria has been intensively investigated. In this mode of action, direct interaction between PGPR and the endogenous microflora is necessary. PGPR can promote plant growth by suppressing diseases caused by soil-borne pathogens (Van Loon and Glick 2004).

Rhizobacteria can offend pathogens through rivalry, the creation of anti-infective agents, or discharge of lytic proteins (Van Loon and Bakker 2003) that make them a strong apparatus for decreasing harms through forestalling pernicious impacts of phytopathogens. The primary microscopic organisms are agents of the genera Pseudomonas, Bacillus, and Streptomyces. Various investigations on microscopic organisms hostile to phytopathogens incorporate microorganisms, for example, fluorescent Pseudomonas and Bacillus subtilis (Kloepper et al. 1989).

Biocontrol Agents - Induced Resistance (ISR AND SAR)

Non-pathogenic rhizobacteria have been appearing to stifle sickness by inciting an obstruction instrument in the plant called "Initiated Systemic Resistance" (ISR) (Van Loon et al., 1998). Actuated opposition is the condition of an upgraded cautious capacity created by plants when properly animated (Van Loon et al., 1998). The inciting rhizobacteria and the pathogens were immunized and stayed kept and spatially isolated on a similar plant with the goal that microbial threat was prohibited and the defensive impact was plant-intervened. Rhizobacteria-intervened ISR takes after pathogen-incited fundamental procured opposition (SAR) in that the two kinds of instigated obstruction render uninfected plant parts progressively impervious to plant pathogens (Van Wees et al., 1997; Van Loon et al., 1998), including parasitic, bacterial and viral pathogens, just as nematodes and bugs (Zehnder et al., 1997; Van Loon et al., 1998; Bent, 2006; Pozo and Azcon Aquilar, 2007). ISR and SAR act through various flagging pathways. Enlistment of SAR is through salicylic corrosive (SA) and ISR requires jasmonic corrosive (JA) and ethylene (ET) flagging pathways (Van Loon et al., 1998). These amassing flagging particles facilitate the barrier reactions and when applied exogenously, are adequate to initiate opposition (Ryals et al., 1996). The security interceded by ISR is essentially not as much as that got by SAR (Van Loon, 2000) and a level of reliance on plant genotype is seen in the age of ISR (Bloemberg and Lugtenberg, 2001). In any case, ISR and SAR together give a superior assurance than every one of only them, showing that they can act additively in instigating protection from pathogens (Van Wees et al., 2000). Salicylic corrosive amassing happens both locally and, at lower levels, fundamentally, in accordance with the advancement of SAR. Utilization of exogenous SA likewise incites SAR in many plant species (Van Loon et al., 1998). Improvement of tissue rot used to be viewed as a typical and a vital component for SAR initiation (Vleesschauwer and Höfte, 2009).

There are a few PGPR inoculants at present marketed that appear to advance development through at any rate one component: concealment of plant illness (bioprotect-

ants), improved supplements procurement (biofertilizers), or phytohormone creation (biostimulants). Microbes in the genera Bacillus, Streptomyces, Pseudomonas, Burkholderia, and Agrobacterium are the natural control operators overwhelmingly considered and progressively promoted. They stifle plant infection through at any rate one instrument, creation of antimicrobial or siderophores and enlistment of fundamental opposition (Tenuta 2003).

Biofertlilizers are additionally accessible for expanding crop supplement take-up of nitrogen from nitrogen-fixing microscopic organisms related with roots (Bashan and Holguin 1997), iron take-up from siderophore-delivering microorganisms (Scher and Baker 1982), sulfur take-up from sulfur-oxidizing microbes (Stamford et al. 2008), and phosphorus take-up from phosphate-mineral solubilizing microscopic organisms (Chabot et al. 1996). Biofertlilizers, that can provide food various requirements of developing plant, go about as a consortium alongside different microorganisms in the rhizosphere. Understanding the cooperation between a consortium of microbial inoculants and plant frameworks will clear approach to saddle more benefits from microbial inoculants for improving the plant development and yield (Raja et al. 2006).

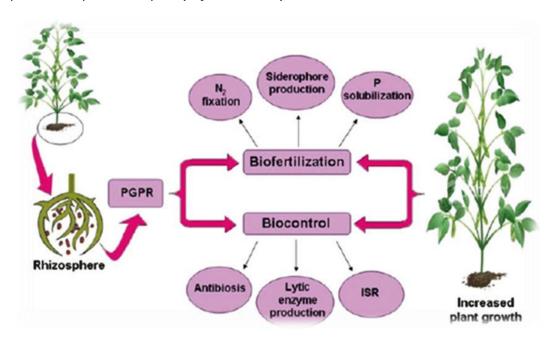


Figure: 2. PGPR as Biofertilizer and Biocontrol

Source: https://www.google.com/url

PGPR, in blend with efficient rhizobia, could improve the development and nitrogen fixation by instigating the inhabitance of presenting rhizobia in the knobs of the vegetable (Tilak et al. 2006). As per Saravana-Kumar and Samiyappan (2007), Bradyrhizobium advanced the nodulation and development of vegetables in blend with dynamic ACC deaminase containing PGPR. It has additionally been built up that certain rhizobacteria have a

catalyst ACC-deaminase that hydrolyses ACC into smelling salts and a-ketobutyrate (Mayak et al. 1999). ACC-deaminase action in PGPR assumes a significant job in the host nodulation reaction (Remans et al. 2007).PGPR containing ACCdeaminase could smother quickened endogenous ethylene union and in this manner may encourage root stretching a nodulation and improve development and yield of plant (Zafar-ul-Hye 2008).

Bacterial Biofertilizers

Improvement of details with a potential PGP to guarantee endurance and movement in the field and similarity with substance treatment of seeds has been the focal point of investigating with utilization of PGPR in horticulture. The exploration in addition to other things improves development conditions before the definition, advancement of vehicles, and proper innovation for application (Date 2001). The U.S. showcase dependent on the data of the panel of natural items from the American Phytopatology Society (APS) in 2005 has enrolled the accompanying items: ten items dependent on the Bacillus (BioYield, Companion, EcoGuard, HiStick N/T, Kodiak , Mepplus, Serenade, Sonata, Subtilex, Yield Shield), two items with Burkholderiacepacia (Deny and Intercept), and six items dependent on Pseudomonas (AtEze, Bio-spare, BlightBan, Frostban, Spot-Less). The vast majority of these items have been arranged in powder solubleformulate. Various genera of microorganisms have been concentrated as PGPR; be that as it may, interests in the innovative work of bioproducts have been higher in ventures on Pseudomonas and Bacillus. Chips away at Pseudomonas have been centered around choices to improve the endurance of these types of microscopic organisms in business details. Moreover, microscopic organisms from the class Bacillus, which are lenient to parching and warmth, have a more drawn out life in business details; this clarifies the more prominent accessibility of business items dependent on Bacillus.

As of now, biofertilizers with PGPR are as yet not a truth of broad commercialization – not at all like the rural utilization of vegetable inoculants utilizing rhizobia effectively a reality for just about a century – aside from Azospirillum inoculants that are accessible for an assortment of yields in Europe and Africa (Vessey 2003). There is no uncertainty that the absence of steady reactions in various host cultivars (Remans et al. 2008) and distinctive field locales (Hilali et al. 2001) are reasons that limit development of the advertising of biofertilizers with PGPR. For these, it is important to do more examinations on the biology and colonization of microorganisms in the rhizosphere at various circumstances, since the biofertilizers with PGPR are prohibitive for specific cultivars, atmosphere, and soil conditions.

Use of a fertilizer that contains organic elements, such as Plant Food, will effectively feed to plants, and also serve as a food source for the microorganisms in Plant Probiotic such as *Bacillus subtilis, Bacillus megaterium, Bacillus methylotrophicus, Bacillus vallismorti, Bacillus licheniformis, Brevibacillusbrevis, Paenibacillusdendritiformis, Bacillus stratosphericus, Streptomyces diastaticus, Trichodermaharzianum, Trichoderma (fungi), Streptomycetes (actinomycetes).*

Limitations In The Use of PGPR

There are a few impediments to the utilization of PGPR for business use. Principal-

ly, adequacy isn't solid for most PGPR. This is on the grounds that the instrument of activity of the PGPR in advancing development isn't surely known. Exploration needs likewise to be led deciding whether and how varieties in soil type, the executives rehearses (for example agrochemical use, turns), and climate impact PGPR viability. Investigation into PGPR is expanding, endeavoring to manage these issues. From around 1988 when the term PGPR first became instituted, research activity as auged by logical distributions has consistently increased. An obstacle in PGPR advancement is the absence of field testing. This since leading field preliminaries has been relentless, expensive and movement is delayed as typically just one yield can be developed in a year. Considering this, analysts resort to the research facility and nursery testing. In spite of the fact that important, field testing must be directed more than once for choice of vivacious PGPR life forms just as to show viability utilizing diverse yield assortments, soil types and climate conditions. Of unique note, counterfeit and unwarranted viability assert that have large amounts of the PGPR inoculant industry in the United States, hampers item improvement. Organizations adding up to being fundamentally fake relief sales reps discolor the business and keep authentic organizations from raising capital required to put up powerful items for sale to the public. Administrative bodies in the United States (Environmental Protection Agency) and Canada (Canadian Food Inspection Agency and the Pest Management Regulatory Agency) have built up strategies for the enlistment of PGPR. Exhibition basically of viability and wellbeing are required before PGPR enrollment. Makers ought not utilize PGPR except if the item is enrolled and endorsed to be a Biofertilizer or Bioprotectant in Canada. As of now there are no such items enlisted in Canada and just a bunch in the United States.

Recent advances in molecular techniques also are empowered in that device are opening up to decide the system by which crop execution is improved utilizing PGPR and track endurance and action of PGPR living beings in soil and roots. The study of PGPR is at the phase where hereditarily altered PGPR can be created. PGPR with antimicrobial, phytohormone and siderophore creation can be made. Anyway, until GMO-PGPR is acknowledged by the controllers because of open will, such items won't be economically accessible.

Benefits of Plant Probiotic

- Overall healthier plants—strengthens plants' natural immunity
- Aids in nutrient breakdown, availability and absorption; reduces nutrient leaching.
- Improves soil structure
- Reduces planting/transplant shock (better plant establishment)
- Promotes faster, stronger rooting
- Easy to use and environmentally beneficial
- Increases resistance to environmental stress
- Enhance plant growth
- Decompose organic matter and pesticide residues--nutrient cycling
- Nitrogen fixation
- Increase resistance to environmental extremes
- Solubilize minerals (including phosphorous) for plant availability
- Produce natural plant hormones

- Improve soil structure
- Enhance seed germination and viability of emerging seedlings
- Increase resistance to environmentalextremes
- Produce natural plant growth hormones
- Increase resistance to environmental extremes
- Decompose organic matter

Focal points of microorganisms, when all is said in done, and PGPR, specifically, in supplement, take-up and activating guard reactions of the plant against pernicious phytopathogens. Probiotics for plants displays diverse useful qualities beneficial in nature which lead to manageable microbial complex biological system. Because of their assorted biology, they display diverse useful characters beneficial in nature which lead to feasible microbial complex ecosys-tem ideal for the host plants. Because of their probiotic nature and once in a while in view of personal affiliation (model endophytes), they frequently fill in as an option in contrast to composts, herbicides, and concoction pesticides. A concise comprehension of decent variety, colonization, system of activity detailing, and utilization of such microbes inoculants encourage their commitment in the administration of continuing capable agroecosystem as exemplified by considering their reactions on a plant model, Arabidopsis. Such microscopic organisms have additionally been abused in the improvement of nature of silk creation. The probiotic idea of different gathering of microorganisms discovered reasonable possibility of fighting parasitic, bacterial nematode, and different maladies which are harmful to the larger part of the plant other than giving wellbeing benefits to over the ground plant parts and roots profound situated in soil. A portion of the parts feature the effect of microorganisms on soil structure and microbial network work that included rhizosphere signals (particles) aside from intervened fundamental opposition for plants, potential for phosphorus sustenance application for microbial consortium, nitrogen fixation, and biofertilizer for eco-accommodating low-input economical harvest creation. Application as yield inoculants for biofertilization would be an appealing choice to diminish the utilization of concoction manures (Bloemberg and Lugtenberg 2001; Vessey 2003). What's more, PGPR have extraordinary adjustment to cruel situations including dry spell pressure (Arshad et al. 2008; Arzanesh et al. 2011), salt pressure (Mayak et al. 2004), high temperatures, dryness or overwhelming rainfalls in tropical nations (Da Mota et al. 2008), and defiled conditions (Burd et al. 2000; Gupta et al. 2002; Dell'Amico et al. 2008), demonstrating that they could add to enhance plant crops in zones with poor horticultural potential. Biocontrol by rhizobacteria could include PGPR and non-PGPR microbes in the manner that concealment of plant maladies could bring about no upgrade of plant development however just in insurance against plant pathogens. Activity of microscopic organisms in the rhizosphere is additionally limited by their capacity to colonize the rhizosphere. This compares to just 2-5 % of rhizobacteria (Kloepper and Schroth 1978).

Selection Criteria For Plant Probiotic Bacteria

Microorganisms are the key segments of the dirt biodiversity. Free-living soil microbes useful to plant development, typically alluded to as plant development, advancing rhizobacteria (PGPR), are equipped for advancing plant development by colonizing the plant root. PGPR are related with the rhizosphere, which is a significant soil biological con-

dition and plant wellbeing for plant—organism cooperations. Choice models for Plant wellbeing advancing probiotic strains incorporate the starting point and bio security of the strains, the endurance of the host, and inhibiting movement against enteric pathogens. Sustainable horticulture alludes to cultivating frameworks where the utilization of mineral manures and pesticides is confined. These agro-environments are thus increasingly subordinate upon natural control of bugs and natural manures to keep up crop wellbeing and profitability. In this section, PGPR job has been talked about during the time spent plant development, advancement, their instruments, and their significance in crop creation on manageable basis. The utilization of probiotic for amphibian creatures is expanding with the interest for Environmental benevolent feasible aquaculture. Bacillus spp. Disconnected from stomach related tract of the fish and another detaches from Pegion Pea rhizospheric soil test tried by morphologically, biochemically and bioformulating with PGPR properties which is progressively advantageous and practical. (Rathod et al., 2018)

Conclusion

The benefits of Plant probiotic to crop growth attributed of PGPR, co-inoculation with these microorganisms might improve plant's performance. This methodology is in concurrence with present day requests of horticultural, financial, social and natural maintainability. Current patterns in Agriculture are centered around the decrease of the pesticide and inorganic composts use, compelling the examination for elective approaches to advance an increasingly reasonable farming. The current research will be focused on the exploitation of PGPR inoculants as Probiotic which is a promising healthier plant alternative to chemical fertilizers and pesticides. Probiotic PGPR inoculants can accelerate rehabilitation of degraded land and improvement of soil fertility, enhancing survival and growth of plants, increase grain yield, lowering malnutrition rates and reduce dependence on chemical fertilizers. Plant Probiotic could be exploited as effective a biofertilizer.

Acknoledgement

I am grateful to UGC RGNF fellowship for provide funding, my guide and department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahedabad, Gujarat, India for guidence and lab facility.

References

- Al-Faragi, J. K., &Alsaphar, S. A. (2012).Isolation and identification of Bacillus subtilus as (probiotic) from intestinal microflora of common carp Cyprinus-carpioL.In *Proceeding of the Eleventh Veterinary Scientific Conference* (Vol. 355, p. 361).
- Ashraf, M., Arshad, M., Siddique, M., Muhammad, G., & Khan, H. A. (2009).In vitro screening of locally isolated Lactobacillus species for probiotic properties. *Pakistan Veterinary Journal*, *29*(4), 186-190.
- Balaji, N., Rajasekaran, K. M., Kanipandian, N., Vignesh, V., &Thirumurugan, R. (2012). Isolation and screening of proteolytic bacteria from freshwater fish Cyprinuscarpio. *International Multidisciplinary Research Journal*, 2(6).

- Bernardeau, M., Vernoux, J. P., Henri-Dubernet, S., &Gueguen, M. (2008). Safety assessment of dairy microorganisms: the Lactobacillus genus. *International journal of food microbiology*, 126(3), 278-285.
- Das, S., Ward, L. R., & Burke, C. (2008). Prospects of using marine actinobacteria as probiotics in aquaculture. *Applied microbiology and biotechnology*, *81*(3), 419-429.
- Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., ...& Collins, J. K. (2001). In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. *The American journal of clinical nutrition*, *73*(2), 386s-392s.
- Gatesoupe, F. J. (2008). Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. *Journal of molecular microbiology and biotechnology*, *14*(1-3), 107-114.
- Guarner, F. (2006). Enteric flora in health and disease. *Digestion*, 73(1), 5-12.
- Guarner, F., &Malagelada, J. R. (2003). Gut flora in health and disease. *The Lancet*, *361*(9356), 512-519.
- Hajela, N., Nair, G. B., Ramakrishna, B. S., &Ganguly, N. K. (2014). Probiotic foods: Can their increasing use in India ameliorate the burden of chronic lifestyle disorders?. *The Indian journal of medical research*, *139*(1), 19.
- Harzallah, D., &Belhadj, H. (2013). Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. *Lactic Acid Bacteria–R & D for Food, Health and Livestock Purposes*, 197-217.
- Hoa, N. T., Baccigalupi, L., Huxham, A., Smertenko, A., Van, P. H., Ammendola, S., ...& Cutting, S. M. (2000). Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. *Applied and Environmental Microbiology*, 66(12), 5241-5247.
- Kirjavainen, P. V., Ouwehand, A. C., Isolauri, E., &Salminen, S. J. (1998). The ability of probiotic bacteria to bind to human intestinal mucus. *FEMS Microbiology Letters*, *167*(2), 185-189.
- Morelli, L. (2000). In vitro selection of probiotic lactobacilli: a critical appraisal. *Current Issues in Intestinal Microbiology*, 1(2), 59-67.
- Noornissabegum, M., &Revathi, K. (2014). Analysis of gut bacterial flora from edible marine fishes of South east coast of India. *Int. J. Curr. Microbiol. App. Sci, 3*(1), 523-528.
- Pandiyan, P., Balaraman, D., Thirunavukkarasu, R., George, E. G. J., Subaramaniyan, K., Manikkam, S., &Sadayappan, B. (2013).Probiotics in aquaculture. *Drug Invention Today*, *5*(1), 55-59.
- Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., &Chincholkar, S. B. (2009). Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. *Food Research International*, *42*(4), 505-510.
- Petsuriyawong, B., &Khunajakr, N. (2011). Screening of probiotic lactic acid bacteria from piglet feces. *Kasetsart Journal*, *45*, 245-253.
- Raja, B. R., & Arunachalam, K. D. (2011). Market potential for probiotic nutritional supplements in India. *African Journal of Business Management*, *5*(14), 5418-5423.
- Rathod Z. R. (2015). Isolation of Probiotic Bacteria from Shoal fish and Mud fish M.Sc. Thesis. Gujarat University, Ahmedabad, Gujarat, India.

- RathodZalak R., SarafMeenu S., Patel Baldev V., (2018), Developing Plant Probiotic Bacteria from Rohu fish on Bioformulation by PGPR activity, Vidya A Journal of Gujarat University, Special issue: Proceeding of National Conference on Synthetic Biology Approaches in Drug Discovery and Microbial Biotechnology, Pg.147-160 ISSN:2321-1520
- Ringø, E., Løvmo, L., Kristiansen, M., Bakken, Y., Salinas, I., Myklebust, R., ...& Mayhew, T. M. (2010). Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. *Aquaculture Research*, *41*(4), 451-467.
- Sánchez, B., Urdaci, M. C., & Margolles, A. (2010). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa—bacteria interactions. *Microbiology*, *156*(11), 3232-3242.
- Sanders, M. E., Gibson, G. R., Gill, H. S., &Guarner, F. (2007). Probiotics: their potential to impact human health. *Council for Agricultural Science and Technology Issue Paper*, *36*, 1-20. www.naturesourceplantfood.com